Nonrelativistic dipole approximation

- Since we are considering strongly non-relativistic case, we may (for the moment) take nonrelativistic Schrödinger wavefunctions in our matrix element:

$$
\begin{gathered}
M_{a b}=\int \psi_{a}^{*}(\boldsymbol{r}) \boldsymbol{\alpha} \boldsymbol{\varepsilon} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r} \\
M_{a b}=\int \psi_{a}^{*}(\boldsymbol{r}) \boldsymbol{p} \boldsymbol{\varepsilon} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}=m \boldsymbol{\varepsilon} \int \psi_{a}^{*}(\boldsymbol{r}) \dot{\boldsymbol{r}} \boldsymbol{\varepsilon} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
\end{gathered}
$$

- For the further evaluation of this matrix element we shall recall Heisenberg equation:

$$
\frac{d \hat{Q}}{d t}=\frac{i}{\hbar}\left[\hat{H}_{0}, \hat{Q}\right] \quad \dot{\boldsymbol{r}}=\frac{i}{\hbar}\left[\hat{H}_{0}, \boldsymbol{r}\right]
$$

- By using this equation, we finally may find:

$$
M_{a b}=\frac{\boldsymbol{\varepsilon}}{i \hbar}\left(E_{a}-E_{b}\right) \int \psi_{a}^{*}(\boldsymbol{r}) \boldsymbol{r} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}=-\frac{\boldsymbol{\varepsilon}}{i \hbar e}\left(E_{a}-E_{b}\right) \int \psi_{a}^{*}(\boldsymbol{r})(\underbrace{(-e \boldsymbol{r})}_{\text {electric dipole moment }} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
$$

E1 selection rules

- From our discussion above it is clear that in order to understand whether some particular transition from level n_{b}, I_{b}, m_{b} to level $n_{a \prime} I_{a \prime} m_{a}$ is allowed we have to find whether transition matrix element is zero or not:

$$
\begin{aligned}
M_{a b} & =-\frac{1}{i \hbar e}\left(E_{a}-E_{b}\right) \int \psi_{n_{a} l_{a} m_{a}}^{*}(\mathbf{r})(-e \mathbf{r}) \psi_{n_{b} l_{b} m_{b}}(\mathbf{r}) d \mathbf{r}= \\
& \propto \int_{0}^{\infty} R_{n_{a} l_{a}}(r) R_{n_{b} l_{b}}(r) r^{3} d r \int Y_{l_{a} m_{a}}^{*}(\theta, \varphi)(\boldsymbol{\varepsilon} \cdot \hat{\mathbf{r}}) Y_{l_{b} m_{b}}(\theta, \varphi) d \Omega
\end{aligned}
$$

- For the further evaluation of this matrix element let us write vector product ar in terms of spherical components:

$$
\boldsymbol{\varepsilon} \cdot \hat{\boldsymbol{r}}=\sum_{q} \varepsilon_{q}^{*} r_{q}
$$

E1 selection rules

$$
\begin{aligned}
\hat{\epsilon} \cdot \hat{r} & =\epsilon_{x} \sin \theta \cos \phi+\epsilon_{y} \sin \theta \sin \phi+\epsilon_{z} \cos \theta \\
& =\sqrt{\frac{4 \pi}{3}}\left(\epsilon_{z} Y_{10}+\frac{-\epsilon_{x}+i \epsilon_{y}}{\sqrt{2}} Y_{11}+\frac{\epsilon_{x}+i \epsilon_{y}}{\sqrt{2}} Y_{1-1}\right)
\end{aligned}
$$

Y_{Im}	$\mathrm{I}=0$	$\mathrm{l}=1$	$\mathrm{I}=2$	$\mathrm{I}=3$
$m=-3$				$\sqrt{\frac{35}{64 \pi}} \sin ^{3} \vartheta e^{-3 i \varphi}$
$m=-2$			$\sqrt{\frac{15}{32 \pi}} \sin ^{2} \vartheta e^{-2 i \varphi}$	$\sqrt{\frac{105}{32 \pi}} \sin ^{2} \vartheta \cos \vartheta e^{-2 i \varphi}$
$\mathrm{m}=-1$		$\sqrt{\frac{3}{8 \pi}} \sin \vartheta e^{-i \varphi}$	$\sqrt{\frac{15}{8 \pi}} \sin \vartheta \cos \vartheta e^{-i \varphi}$	$\sqrt{\frac{21}{64 \pi}} \sin \vartheta\left(5 \cos ^{2} \vartheta-1\right) e^{-i \varphi}$
$\mathrm{m}=0$	$\sqrt{\frac{1}{4 \pi}}$	$\sqrt{\frac{3}{4 \pi}} \cos \vartheta$	$\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \vartheta-1\right)$	$\sqrt{\frac{7}{16 \pi}}\left(5 \cos ^{3} \vartheta-3 \cos \vartheta\right)$
$\mathrm{m}=1$		$-\sqrt{\frac{3}{8 \pi}} \sin \vartheta e^{i \varphi}$	$-\sqrt{\frac{15}{8 \pi}} \sin \vartheta \cos \vartheta e^{i \varphi}$	$-\sqrt{\frac{21}{64 \pi}} \sin \vartheta\left(5 \cos ^{2} \vartheta-1\right) e^{i \varphi}$
$\mathrm{m}=2$			$\sqrt{\frac{15}{32 \pi}} \sin ^{2} \vartheta e^{2 i \varphi}$	$\sqrt{\frac{105}{32 \pi}} \sin ^{2} \vartheta \cos \vartheta e^{2 i \varphi}$
$\mathrm{m}=3$				$-\sqrt{\frac{35}{64 \pi}} \sin ^{3} \vartheta e^{3 i \varphi}$

E1 selection rules

So we „simply" have to calculate following integral

$$
M_{a b} \propto \int Y_{l_{a} m_{a}}^{*}(\theta, \varphi)\left(\varepsilon_{z} Y_{10}+\frac{-\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}} Y_{11}+\frac{\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}} Y_{1-1}\right) Y_{l_{b} m_{b}}(\theta, \varphi) d \Omega
$$

Reminder on spherical harmonics

$$
\begin{aligned}
Y_{\ell_{1} m_{1}}(\theta, \phi) Y_{\ell_{2} m_{2}}(\theta, \phi)= & \sum_{\ell=\left|\ell_{1}-\ell_{2}\right|}^{\ell_{1}+\ell_{2}} \sqrt{\frac{\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)}{4 \pi(2 \ell+1)}}\left\langle\ell 0 \mid \ell_{1} \ell_{2} 00\right\rangle \mathrm{x} \\
& \underbrace{\left\langle\left\langle\ell\left(m_{1}+m_{2}\right) \mid \ell_{1} \ell_{2} m_{1} m_{2}\right\rangle Y_{\ell\left(m_{1}+m_{2}\right)}(\theta, \phi)\right.}_{\text {Clebsch - Gordan-coefficients (CGC) }}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle J M \mid j_{a} m_{a} j_{b} m_{b}\right\rangle \neq 0, \text { if } \\
& \left|j_{a}-j_{b}\right| \leq J \leq j_{a}+j_{b} \\
& \text { and } \\
& M=m_{a}+m_{b}
\end{aligned}
$$

E1 selection rules

$$
\begin{aligned}
& Y_{1 m}(\theta, \phi) Y_{\ell_{i} m_{i}}(\theta, \phi)=\sum_{\ell=\left|\ell_{i}-1\right|}^{\ell_{i}+1} \sqrt{\frac{3\left(2 \ell_{i}+1\right)}{4 \pi(2 \ell+1)}}\left\{\ell 0\left|\ell_{i} 100\right\rangle \mathrm{x}\right. \\
& \mathrm{X}\left\{\ell\left(m+m_{i}\right)\left|\ell_{i} 1 m_{i} m\right\rangle Y_{\ell\left(m_{i}+m\right)}(\theta, \phi)\right. \\
& M_{a b} \propto \int Y_{l_{a} m_{a}}^{*}(\theta, \varphi) Y_{1 m}(\theta, \varphi) Y_{l_{b} m_{b}}(\theta, \varphi) d \Omega= \\
& =\sqrt{\frac{3\left(2 l_{b}+1\right)}{4 \pi\left(2 l_{n}+1\right)}}\left\langle l_{a} 0 \mid l_{b} 100\right\rangle\left\langle l_{a} m_{a} \mid l_{b} 1 l_{b} m\right\rangle
\end{aligned}
$$

E1 selection rules

So we „simply" have to calculate following integral

$$
\begin{aligned}
& M_{a b} \propto \int Y_{l_{a} m_{a}}^{*}(\theta, \varphi)\left(\varepsilon_{z} Y_{10}+\frac{-\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}} Y_{11}+\frac{\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}} Y_{1-1}\right) Y_{l_{b} m_{b}}(\theta, \varphi) d \Omega \\
& M_{a b} \propto=\sqrt{\frac{3\left(2 l_{b}+1\right)}{4 \pi\left(2 l_{n}+1\right)}}\left\langle l_{a} 0 \mid l_{b} 100\right\rangle \times \\
& \times\left(\varepsilon_{z}\left\langle l_{a} m_{a} \mid l_{b} 1 m_{b} 0\right\rangle+\frac{-\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}}\left\langle l_{a} m_{a} \mid l_{b} 1 m_{b} 1\right\rangle+\frac{\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}}\left\langle l_{a} m_{a} \mid l_{b} 1 m_{b}-1\right\rangle\right)
\end{aligned}
$$

E1 selection rules

So we „simply" have to calculate following integral

$$
\begin{aligned}
& M_{a b} \propto \int Y_{l_{a} m_{a}}^{*}(\theta, \varphi)\left(\varepsilon_{z} Y_{10}+\frac{-\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}} Y_{11}+\frac{\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}} Y_{1-1}\right) Y_{l_{b} m_{b}}(\theta, \varphi) d \Omega \\
& M_{a b} \propto=\sqrt{\frac{3\left(2 l_{b}+1\right)}{4 \pi\left(2 l_{n}+1\right)}}\left\langle l_{a} 0 \mid l_{b} 100\right\rangle \times \\
& \times(\varepsilon_{z}\langle\underbrace{\left\langle l_{a} m_{a} \mid l_{b} 1 m_{b} 0\right\rangle+\frac{-\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}}}_{\Delta \mathrm{m}=0} \underbrace{l_{a} m_{a}\left|l_{b} 1 m_{b} 1\right\rangle}_{\Delta \mathrm{m}=-1}+\frac{\varepsilon_{x}+i \varepsilon_{y}}{\sqrt{2}}\langle\underbrace{l_{a} m_{a}\left|l_{b} 1 m_{b}-1\right\rangle}_{\underbrace{}_{\Delta \mathrm{m}=+1}})
\end{aligned}
$$

